トランジスタースイッチ

H19年度基礎電気物理入門補助資料 8 June 2007 和田

目的: 電子スイッチとしてのトランジスターの動作を理解する。

PNP トランジスター

下の左図で、トランジスター 2SA1015 のベース (B) にわずかな電流(~数十 μA)を流すとエミッタ (E)-コレクタ (C) 間に電流(数 mA ~数十 mA)が流れ ON 状態となる。ベース電流を流さないと、エミッタ (E)-コレクタ (C) 間には電流が流れず OFF 状態となる。

NPN トランジスター

上の右の図で、2SC1815 のベース (B) にわずかな電流(~数十 μA)を流すとコレクタ (C)-エミッタ (E) 間に電流(数 mA ~数十 mA)が流れ ON 状態となり、ベース電流を流さないと、コレクタ (C)-エミッタ (E) 間には電流が流れず OFF 状態となる。

電子制御スイッチとしての基本動作が確認できたら、次にベース電流を決めている抵抗 $R_{\rm B}$ の値を $1{
m M}\Omega$ や $10{
m M}\Omega$ に替えてみるとどうなるか実験してみよう!

ベース電流 I_B に対するコレクタ電流 I_C の比率を直流電流増幅率と呼び $h_{FE}=\frac{I_C}{I_B}$ である。 h_{FE} は数十から数百にまで及ぶ。

LED 点滅回路

以前に組んだ LED の点滅回路を再び組み、 動作原理を考えてみよう。

これまでに学んだ、抵抗、コンデンサの働きと、トランジスタの ON/OFF 機能により、LED が点滅する仕組みを理解しよう!

- ◆ ベース (B)-エミッタ (E) 間の順方向電圧 V_{BE} は約 0.7 V
- 高輝度 LED の順方向電圧は約1.9 V

